- 1. <u>Case No. 5064/2016 Shri Ravindra Ramakant Gulgule, Joint Managing Director, M/s Thinq Pharma CRO Pvt. Ltd., A/30, Thinq House, Road No. 10, MIDC Wagle Estate, Thane West (MH)-400604 Prior Environment Clearance for Proposed Active Pharma Ingredients for M/s Thinq Pharma- CRO Pvt. Ltd., Bulk Drug & Drug Intermediate Manufacturing Plant at M 40 & 42 Industrial State Dector-3, Village-Pithampur, Tehsil-Pithampur, District-Dhar (MP) Case forworded to SEIAA letter No. 11808 dtd. 14-03-16 rec. dt 17/03/16 Env. Consultant: Not discosed. For-ToR</u>
- The company is planning to set up a new unit as Thinq Pharma CRO ltd. at Plot No. M40-42,Pithampur industrial estate-3, Bugdoon, Dhar,Madhya Pradesh. M.P. Audyogik Kendria Vikas Nigam (Indore) LTD allotted above plot no. vide letter no. AKVN/IND/INFRA/2016/18917 dtd. 03/03/2016. The land for the project admeasuring 21794 Sq. meters is allotted by MPAKVN on lease to the company.
- The company is putting up a project to manufacture intermediates and APIs. Theses intermediates are primarily for contrast media APIs. These are iodine based. Currently, these products are imported. Producing within India should save valuable foreign exchange and also ensure un-interrupted supply of good quality of higher intermediates to API and formulation manufacturers.
- Project Land is situated within the <u>designated notified industrial area of</u> <u>MPAKVN</u>.
- No wildlife sanctuary/National Park/Tiger Reserve falls within 10 km radius.
- No critically polluted area falls within 10 km radius of project site.

Site Address	Plot No. M40 & 42, Pithampur Indsutria Estate-3, Budgoon, Dhar (MP)
Production Capacity	Given below
Cost of Project	20 Crore
Boiler capacity	3 T

Power Requirement	500 KVA
Area of plantation	3268 sqmt (0.8 acre)
Alternative Source of Power	DG set of 250 KVA
Land acquired	21794square meter

PROPOSED FACILITIES;

- Separate Raw Materials and Finished Goods Storage area.
- Comprehensive Chemical Management Plan and Waste Management Plan will be implemented.
- Solvent Recovery Plant to manage Solvents
- Effluent Treatment Plant to manage Wastewater
- Installation of scrubber for fugitive emissions.
- Provision of Adequate Stack height and vents for Boiler and DG sets
- Plantation (Pollution Specific green belt development).
- Membership of TSDF Facility to manage generated wastes.

ENVIRONMENTAL SETTING OF THE PROJECT

S. No.	Particulars	Details
1	Co-ordinate	1. 22°38'46"N- 75°34'49"E (NE)
		2. 22°38'46"N- 75°34'49"E (SE)
		3. 22°38'46"N - 75°34'51"E (SW)
		4. 22°38'46"N- 75°34'49"E (NW)
4	Nearest Town	Town – Pithampur – Distance – 5 KM
		City – Indore – Distance – 25 KM
		District Head quarter – Dhar – Distan

		25 KM
5	Nearest Railway Station/Town	Rau Railway Station approx – 20 KM
6	Nearest Airport	Indore Domestic Airport approx - 30 KM
7	Nearest Highway/Road	Mhow- Ghatabillod Road
8	Hills/Valley	Narmada Valley
9	Ecological Sensitive Zone	None
10	Reserve Forest	None
11	Nearest Village	Budgoon -0.12 km - W
12	Nearest River/ Nalla	Local Nalla - 0.15km - W
		Angrer Nadi – 5.0km - SE
13	Other industries in 5 km radius	DivyaJyoti, Indorama, Avtec Hindustan Mot Bridgestone
14	Surrounding Features	North : Agricultural Land
		South : Industries and village
		East : Agricultural land
		West : Village road

AREA STATEMENT

Particulars	Total Area (Sq. mt.)
Total Land	21794
Built up area	13500
Open Land	8294

Particulars	Total Area (Sq. mt.)
Proposed roof area	13500
Utilities area	750
ETP area	750
AHU Area	250
Plant and machinery area	8000
Admin office	2000
Plantation	3268

PRODUCTS AND PRODUCTION CAPACITY

Sr.	Product	Qty
No.		MT/PA
1	(2S)-1-{[3,5-bis(chlorocarbonyl)-2,4,6-triiodophenyl]amino}-1- oxopropan-2-yl acetate(Iopamidol stage-III)	82.71
2	5-amino-2,4,6-triiodobenzene-1,3-dicarbonyl dichloride(Iopamidol stage-II)	80.29
3	Paroxetine Hydrochloride	0.4
4	QuetiapineFumatate	0.8
5	Valacyclovir hydrochloride	0.2
6	Ractopamine hydrochloride	6
7	OctopamineHydrochloride	6

8	Benzocaine	10
9	Benfothiamine	2
10	5-Phenyl valariac acid methyl ester (5-PVM)	3
11	trans Retinoic acid, 1-hydroxy-3,3-dimethyl-2-butanone ester(G-101)	0.2
12	Chlorothymol	0.3
13	N-Boc-4-Hydroxy-L-Proline	3
14	2-Nitro benzene sulfanyl chloride(NSC)	0.2
15	Sharpless catalyst	0.02

RAW MATERIAL

Sr. No.	Key Raw materials Solvents	Quantity
		МТ
1	Iodine	218.39
2	5-amino isophthalic acid	102.37
3	L-Lactic acid	68.62
4	Acetyl chloride	89.3
5	Thionyl chloride	385.35
6	S-Carbinol	0.492
7	Tosyl chloride	0.524
8	Sesamol	0.284
9	Phenyl chloroformate	0.26

10	Dibenzo [b,f] [1,4] thiazepine-11(10H) one (DBTO)	0.776
11	Piperazine	0.584
12	Dimethyl aniline	0.312
13	2-chloro ethoxy ethanol	0.424
14	Fumaric acid	0.2
15	POC13	0.52
16	Acyclovir	0.278
17	Cbz-L-Valine	0.388
18	Dicyclohexyl carbodiimide (DCC)	0.59
19	2'-amino-4-hydroxyacetophenone	24.74
20	Raspberry ketone	5.42
21	4-Nitro benzoic acid	14.7
22	Thiamine HCl	4
23	Benzoyl chloride	1.34
24	Phosphoric acid	31.71
25	Phosphorous pentoxide	4
26	Benzene	13.16
27	Delta valaralactone	4.18
28	Aluminium chloride	10.44
29	All trans retinoic acid	0.18
30	1-chloro picolone	0.18
31	Cesium carbonate	0.21

32	Thymol	0.42
33	Sulfuryl chloride	0.45
34	Carbon tetachoride	0.96
35	4-Hydroxy L-Proline	4.17
36	BOC anhydride	8.34
37	Sodium periodate	24.46
38	Ruthenium chloride	0.01
39	2-chloro nitro benzene	0.57
40	Sodium sulfide	0.43
41	Sulfur	0.09
42	Trichloro ethylene	0.51
43	(S)-(6-methoxyquinolin-4-yl) (2R,4S,5R)-5-ethyl-1-azabiclo 2.2.2 oct-2-yl methanol. HCl	0.035
44	Dichloro Phthalyl hydrazine	0.00871

45	Toluene	59.2243
46	Methanol	24.826
47	Dichloromethane	480.872
48	Acetone	2.79918
49	Isopropanol	54.741
50	Ethyl acetate	753.01
51	Dimethyl formamide	3.342
52	Pet ether/hexane	6.36

53	Dimethyl acetamide	75.27
55	Tetrahydrofuran	24.69
55	Triethyl amine	92.54

WATER CONSUMPTION AND WASTE WATER GENERATION

Sr.No	Heads	Consumption KLD	Generation of	Treatment and Disposa
•			waste water KLD	
1	Process	50	45	To ETP
2	Domestic	5	4	To ETP – Aeration Tank
3	Cooling	1	1	Neutralization and use Gardening
4	Boiler	5	3	Neutralization and use Gardening
5	Washing	5	5	To ETP
6	Gardening	0	0	
7	Total	66	59	

Sources of Hazardous / Solid Wastes

Sources	Type of	Preventive measures	Control Measures	Treatment
	pollutants			Disposal

DG Sets	Used / Spent Oil	Spill prevention plans and training. Changing oil as per operation and service manual	Proper collection and storage in close lid MS drum	Sell to authorized recycler
Process/Utlity equipment maintenance	Oil Soaked Waste	Control on Issue of material, Behavorial Trainings, Proper SOPs	Monitoring and Measurement of wastes	To MPWM TSDF, Pithampur.
Treatment of wastewater in ETP	Chemical Sludge	Reduction measures for waste water	Proper storage in HDPE bags	To MPWM TSDF, Pithampur.
Discarded empty containers	Solid waste	Optimum Usage of Chemicals	Proper storage in covered Concrete Shed	Sell to authorized recycler
DM Plant, Softener	Spent Ion Resin	Spill prevention plans and training.	Proper collection and storage in close lid MS drum	To MPWM TSDF, Pithampur.
Mfg Process	Process Residue and wastes	Strict process control, Proper SOPs, QMS implementation.	Monitoring and Measurement of wastes	To MPWM TSDF, Pithampur.
Mfg Process	Spent Catalyst/Car bon	Reduction measures	Proper storage in HDPE bags	Recovery

The case was presented by the PP and their consultant for TOR to carryout EIA studies wherein it was observed by committee that MPAKVN has not issued the NOC for all the proposed products. However, committee after

deliberations decided that PP can go ahead with the standard TOR as prescribed by the MoEF&CC and should submit NOC of MPAKVN for all the proposed products within 03 weeks. Any additional TOR (if any) may be issued after receipt of NOC from MPAKVN.